Pages

Showing posts with label Alarms and security related schematics. Show all posts
Showing posts with label Alarms and security related schematics. Show all posts

Friday, July 8, 2011

Miniature Loop Alarm

A few months ago, I decided to build a compact, yet effective alarm. My demands were:- simple construction, reliable operation, very small power consumption, and, most of all, small size. I started with CMOS logic gates, but was soon forced to abandon the concept after a few unsuccessful (and far too complicated) attempts. Then I suddenly realized that a simple transistor switch might do the job and I was right.
As you can clearly see from the schematics, the circuit is utterly primitive and consists of two identical transistor switches. Each has its own alarm LED and they're coupled to a neat 82dB buzzer. The two 1N4148 diodes are used to prevent a signal from one sensor from triggering both LEDs. The sensors used are either wire loops or normally closed reed switches or even a combination of both. You could, for example, tie a wire loop to your suitcase and place a reed switch to the door of your hotel room.
Since this little alarm is intended to be kept in arms reach at all times, there aren't any provisions for automatic shutdown after a certain period of time. The buzzer will sound until you turn the whole circuit off or connect the wire loop back to the jumpers. The same goes for the two LEDs, each indicating its own zone.
Construction is not critical and there aren't any traps for the novice. The two 100n capacitors aren't really necessary, I just included them to make sure that there is no noise interference coming from the long wire loops. For transistors, you can use any NPN general-purpose audio amplifiers/switches (BC 107/108/109, BC 237/238, 2N2222, 2N3904...). Assemble the circuit on perf board. Together with the buzzer and a 9V battery, it should easily fit in a pocket-sized plastic box smaller than a pack of cigarettes. A fresh battery should suffice for weeks of continuous operation.

Inertia sensor

source

Modular Burglar Alarm

This circuit features automatic Exit and Entry delays and a timed Bell Cut-off. It has provision for both normally-closed and normally-open contacts, and a 24-hour Personal Attack/Tamper zone. It is connected permanently to the 12-volt supply and its operation is "enabled" by opening SW1. By using the expansion modules, you can add as many zones as you require; some or all of which may be the inertia (shock) sensor type. All the green LEDs should be lighting before you open SW1. You then have up to about a minute to leave the building. As you do so, the Buzzer will sound. It should stop sounding when you shut the door behind you. This indicates that the Exit/Entry loop has been successfully restored within the time allowed.

When you re-enter the building you have up to about a minute to move SW1 to the off position. If SW1 is not switched off in time, the relay will energise and sound the main bell. It will ring for up to about 40 minutes. But it can be turned off at any time by SW1. The "Instant" zone has no Entry Delay. If you don't want to use N/O switches, leave out R8, C8 and Q2; and fit a link between Led 3 and C7. The 24 Hour PA/Tamper protection is provided by the SCR/Thyristor. If any of the switches in the N/C loop is opened, R11 will trigger the SCR and the bell will ring. In this case the bell has no time limit. Once the loop is closed again, the SCR may be reset by pressing SW2 and temporarily interrupting the current flow. The basic circuit will be satisfactory in many situations.
However, it's much easier to find a fault when the alarm is divided into zones and the control panel can remember which zone has caused the activation. The expansion modules are designed to do this. Although they will work with the existing instant zone, they are intended to replace it. When a zone is activated, its red LED will light and remain lit until the reset button is pressed. All the modules can share a single reset button. 





source

Sun - Up Alarm


The Sun - Up Alarm can be used to provide a audible alarm for when the sun comes up or it can be used in a dark area and detect when a light comes on. It can also be used to detect a light beam, headlights etc. The circuit works as follows. The phototransistor is very sensitive to light. (Any phototransistor will work fine) The sun shining on this device will provide a high to one of the NAND gates. This will cause another NAND gate to oscillate which will drive another gate to output a 100hz tone. The transistor provides drive for the speaker.

Saturday, June 11, 2011

Water Level Alarm Circuit

DESCRIPTION
simple water level alarm circuit that will produce an audible alarm when the water level reaches a preset level.
this circuit can be powered of 3v battery and easy to use.

PARTS
resister 100k,1k
capacitor 2.2uF
555 timer ic
battery 3v
buzzer

ABOUT
probes A and B can be made of two insulated copper wires.
place the probes at the position where you have to sense the level.



Saturday, June 4, 2011

Fridge door Alarm

Description


Beeps if you leave open the door over 20 seconds 3V battery operation, simple circuitry





Parts:
R1____________10K   1/4W Resistor
R2___________Photo resistor (any type)
R3,R4________100K   1/4W Resistors

C1____________10nF  63V Polyester Capacitor
C2___________100µF  25V Electrolytic Capacitor

D1,D2_______1N4148  75V 150mA Diodes

IC1___________4060  14 stage ripple counter and oscillator IC

Q1___________BC337  45V 800mA NPN Transistor

BZ1__________Piezo sounder (incorporating 3KHz oscillator)

SW1__________Miniature SPST slide Switch

B1___________3V Battery (2 AA 1.5V Cells in series)

Circuit operation:
This circuit, enclosed in a small box, is placed in the fridge near the lamp (if any) or the opening. With the door closed the interior of the fridge is in the dark, the photo resistor R2 has a high resistance (>200K) thus clamping IC1 by holding pin 12 high. When a beam of light enters from the opening, or the fridge lamp lights, the photo resistor lowers its resistance (<2K), pin 12 goes low, IC1 starts counting and, after a preset delay (20 seconds in this case) the piezo sounder beeps for 20 sec. then stops for the same lapse of time and the cycle repeats until the fridge door closes. D2 connected to pin 6 of IC1 makes the piezo sounder beeping 3 times per second.
Notes:
  • Connecting D1 to pin 2 of IC1 halves the delay time.

  • Delay time can be varied changing C1 and/or R3 values.

  • Any photo resistor type should work well.

  • Current drawing is insignificant, so SW1 can be eliminated.

  • Place the circuit near the lamp and take it away when defrosting, to avoid circuit damage due to excessive moisture.

  • Don't place it in the freezer. 






Alarm control keypad

Description
The IC is a quad 2 input "AND" gate, a CMOS 4081. These gates only produce a HIGH output, when BOTH the inputs are HIGH. When the key wired to 'E' is pressed, current through R1 and D1 switchs Q5 on.The relay energizes; and Q5 is 'latched on' by R8. Thus, the Alarm is set by pressing a single key,say one of the two non-numeric symbols. 



Important notes
The IC is a quad 2 input "AND" gate, a CMOS 4081. These gates only produce a HIGH output, when BOTH the inputs are HIGH. When the key wired to 'E' is pressed, current through R1 and D1 switchs Q5 on.The relay energises; and Q5 is 'latched on' by R8. Thus, the Alarm is set by pressing a single key,say one of the two non-numeric symbols.
The alarm will switch off when the 4 keys connected to "A,B,C,D" are pushed in the right order.The circuit works because each gate 'Stands' upon its predecessor.If any key other than the correct key is pushed, then gate 1 is knocked out of the stack, and the code entry fails. Pin 1 is held high by R4. This 'Enables' gate 1; and when button 'A' is pressed, the output at pin 3 will go high. This output does two jobs.It locks itself 'ON' through R2 and it 'Enables' gate 2, by taking pin 5, high. Now, if 'B' is pressed, the output of gate 2, at pin 4 will go high. This output does two jobs. It locks itself 'ON' through R3 and it 'Enables' gate 3 by taking pin 12 high.
Now, if 'C' is pressed, the output of gate 3 will lock itself 'ON' through R5 and, by taking pin 8 high, 'Enable' gate 4. Pressing 'D' causes gate 4 to do the same thing; only this time its output, at pin 10, turns Q4 'ON'. This takes the base of Q5 to ground, switching it off and letting the relay drop out. This switches the alarm off.
Any keys not connected to 'A B C D E' are wired to the base of Q1. Whenever 'E' or one of these other keys is pressed, pin 1 is taken low and the circuit is reset. In addition, if 'C' or 'D' is pressed out of sequence, then Q2 or Q3 will take pin 1 low and the circuit will reset. Thus nothing happens until 'A' is pressed.Then if any key other than 'B' is pressed, the circuit will reset.
Similarly, after 'B', if any key other than 'C' is pressed,the circuit will reset. The same reasoning also applies to 'D'.
The Keypad needs to be the kind with a common terminal and a separate connection to each key. On a 12 key pad, look for 13 terminals. The matrix type with 7 terminals will NOT do. Wire the common to R1 and your chosen code to 'A B C D'. Wire 'E' to the key you want to use to switch the alarm on. All the rest go to the base of Q1.
The diagram should give you a rough guide to the layout of the components, if you are using a stripboard. The code you choose can include the non-numeric symbols.In fact, you do not have to use a numeric keypad at all,or you could make your own keypad.
I haven't calculated the number of combinations of codes available, but it should be in excess of 10 000 with a 12 key pad; and, after all, any potential intruder will be ignorant of the circuit's limitations. Of Course, if you must have a more secure code, I can think of no reason why you shouldn't add another 4081 and continue the process of enabling subsequent gates. Or you could simply use a bigger keypad with more "WRONG" keys.
Any small audio transistors should do. The 27k resistors could be replaced with values up to 100k. And the only requirements for the 4k7 resistors is that they protect the junctions while providing enough current to turn the transistors fully on.
Capacitors (C1 C2 C3 C4 C5) are there to slow response time and overcome any contact bounce. They are probably unnecessary.

Water Level Indicator with alarm


This circuit not only indicates the amount of water present in the overhead tank but also gives an alarm when the tank is full.
The circuit uses the widely available CD4066, bilateral switch CMOS IC to indicate the water level through LEDs.
When the water is empty the wires in the tank are open circuited and the 180K resistors pulls the switch low hence opening the switch and LEDs are OFF. As the water starts filling up, first the wire in the tank connected to S1 and the + supply are shorted by water. This closes the switch S1 and turns the LED1 ON. As the water continues to fill the tank, the LEDs2 , 3 and 4 light up gradually.
The no. of levels of indication can be increased to 8 if 2 CD4066 ICs are used in a similar fashion.
When the water is full, the base of the transistor BC148 is pulled high by the water and this saturates the transistor, turning the buzzer ON. The SPST switch has to be opened to turn the buzzer OFF.
Remember to turn the switch ON while pumping water otherwise the buzzer will not sound!

Door Alarm

Device purpose:
This circuit emits a beep and/or illuminates a LED when someone touches the door-handle from outside. The alarm will sound until the circuit will be switched-off.
The entire circuit is enclosed in a small plastic or wooden box and should be hanged-up to the door-handle by means of a thick wire hook protruding from the top of the case.
A wide-range sensitivity control allows the use of the Door Alarm over a wide variety of door types, handles and locks. The device had proven reliable even when part of the lock comes in contact with the wall (bricks, stones, reinforced concrete), but doesn't work with all-metal doors.
The LED is very helpful at setup.

Hangs up on the door-handle.
Beeps when someone touches the door-handle from outside.
Component list
R1______________1M   1/4W Resistor
R2______________3K3  1 or 2W Resistor (See Notes)
R3_____________10K   1/2W Trimmer Cermet (See Notes)
R4_____________33K   1/4W Resistor
R5____________150K   1/4W Resistor
R6______________2K2  1/4W Resistor
R7_____________22K   1/4W Resistor
R8______________4K7  1/4W Resistor

C1,C2__________10nF   63V Ceramic or Polyester Capacitors
C3_____________10pF   63V Ceramic Capacitor
C4,C6_________100nF   63V Ceramic or Polyester Capacitors
C5______________2µ2   25V Electrolytic Capacitor
C7____________100µF   25V Electrolytic Capacitor

D1,D2,D4_____1N4148   75V 150mA Diodes
D3_____________5 or 3mm. Red LED

Q1,Q2,Q3,Q5___BC547   45V 100mA NPN Transistors
Q4____________BC557   45V 100mA PNP Transistor

L1_________________   (See Notes)
L2_____________10mH  miniature Inductor

Hook_______________   (See Notes)

BZ1___________Piezo sounder (incorporating 3KHz oscillator)

SW1,SW2________SPST  miniature Slider Switches

B1_______________9V  PP3 Battery

Clip for PP3 Battery
Circuit operation:
Q1 forms a free-running oscillator: its output bursts drive Q2 into saturation, so Q3 and the LED are off. When part of a human body comes in contact with a metal handle electrically connected to the wire hook, the body capacitance damps Q1 oscillations, Q2 biasing falls off and the transistor becomes non conducting. Therefore, current can flow into Q3 base and D3 illuminates. If SW1 is closed, a self-latching circuit formed by Q4 & Q5 is triggered and the beeper BZ1 is activated. When the human body part leaves the handle, the LED switches-off but the beeper continues to sound, due to the self-latching behavior of Q4 & Q5. To stop the beeper action, the entire circuit must be switched-off opening SW2. R3 is the sensitivity control, allowing to cope with a wide variety of door types, handles and locks.
Notes:
  • L1 is formed winding 20 to 30 turns of 0.4mm. diameter enameled copper wire on R2 body and soldering the coil ends to the resistor leads. You should fill R2 body completely with coil winding: the final turn's number can vary slightly, depending on different 1 or 2W resistor types actual length (mean dimensions for these components are 13-18mm. length and 5-6mm. diameter).
  • The hook is made from non-insulated wire 1 - 2mm. diameter (brass is well suited). Its length can vary from about 5 to 10cm. (not critical).
  • If the device is moved frequently to different doors, Trimmer R3 can be substituted by a common linear potentiometer fitted with outer knob for easy setup.
  • To setup the device hang-up the hook to the door-handle (with the door closed), open SW1 and switch-on the circuit. Adjust R3 until the LED illuminates, then turn slowly backwards the screwdriver (or the knob) until the LED is completely off. At this point, touching the door-handle with your hand the LED should illuminate, going off when the hand is withdrawn. Finally, close SW1 and the beeper will sound when the door-handle will be touched again, but won't stop until SW2 is opened.
  • In regular use, it is advisable to hang-up and power-on the device with SW1 open: when all is well settled, SW1 can be closed. This precautionary measure is necessary to avoid unwanted triggering of the beeper.